
 Kernel Shim Engine for fun and not
so much (but still a little?) profit

Or how to write a super long title for
nothing :)

Who am i?

• Gaby - @pwissenlit

• RE engineer at Quarkslab (fr)

• Play with Windows Internals

• Attending BlackHoodie for the third time
– And will probably do it again and again and again

2

Shim Engine

©blogs.technet.microsoft.com

• A.k.a Windows Application Compatibility

• Mechanisms to ensure retro-compatibility for
3rd party apps

• Exist since Windows XP

3

• Hot patch import address table (IAT) when the
app is loaded

• Redirect exec flow before calling the external
function

Useful if the API behaviour changed from what you were expecting

Shim Engine

4

Kernel Shim Engine

• Since Windows 8.1

• Same idea – but in kernel!

• Not really known for some reasons

– Only two (badass) guys talked about it (AFAIK)…

• Alex Ionescu - Recon 2016

• Geoff Chappell - (awesome) blog on windows internals

5

What does it do?

• Can be applied on drivers and devices
• Can hook:

– Import address table (IAT)
– Driver callbacks

• DRIVER_OBJECT’s DriverUnload, DriverStartIo, etc.
• DRIVER_EXTENSION’s AddDevice, etc.

– I/O request packet (IRP)

• Applied when the driver is loaded

 -> Great way to ensure persistence :DDD

• Cf. Ionescu’s slides at recon 2k16

6

What do we do?

7

Keylogger (speedrun)

• Need to hook the keyboard driver
– i8042ptr.sys driver

• Class Service Callback routine
– Retrieve the keystrokes

• IRP_MJ_DEVICE_CONTROL callback
– Set the class service callback routine during the

driver init

-> Let’s shim that callback <-

8

BTW how do we write a shim?

Recipe for an easy keylogger at home

9

Ingredients

A.k.a kernel shim components… :-^

10

Ingredients

Functions in ntoskrnl.exe

Start most of the time with Kse*:
KsepEngineInitialize
KseRegisterShim
KseShimDatabaseOpen
KsepResolveShimHooks
KsepPoolAllocatePaged
KsepGetShimsForDriver
KsepApplyShimsToDriver
etc.

No documentation but some symbols :)

11

Ingredients

Functions in ntoskrnl.exe KSE engine in memory

Stores shim engine information like:
- Current engine status
- Shimmed drivers list
- Shim providers list
- Etc.

12

Ingredients

Functions in ntoskrnl.exe KSE engine in memory

A bunch of shim providers

- Drivers storing the functions where the
execution flow will be redirected to

13

Ingredients

Functions in ntoskrnl.exe KSE engine in memory

Database (SDB) on the file system

A bunch of shim providers

- Stores registered shims on the OS
-> C:\Windows\apppatch\drvmain.sdb

- Binary file
- Same format as in userland

(but with new tags…)
- The SDB is not signed!

14

Ingredients

Functions in ntoskrnl.exe KSE engine in memory

Registry
- Not mandatory
- Override the SDB

A bunch of shim providers

Database (SDB) on the file system

15

Ingredients

Functions in ntoskrnl.exe KSE engine in memory

A bunch of shim providers

Database (SDB) on the file system

16

Registry

Ingredients

Functions in ntoskrnl.exe KSE engine in memory

A bunch of shim providers

Database (SDB) on the file system

MEH…. :/

17

Registry

• Same format as in userland

• Some tools available:

– Sdb2xml.exe

– Sdb-explorer.exe

– Etc.

But parsers exist ffs!

18

• Decompiled SDB:

 <?xml version="1.0" encoding="UTF-16"?>

<DATABASE NAME="Microsoft Driver Compatibility Database" ID="{F9AB2228-3312-4A73-B6F9-
936D70E112EF}">

*…+

<DRIVER NAME="WSRRCI" VENDOR="Wisair">

 <KDRIVER NAME="wsr_rci.sys" ID="{1E61CDCD-D929-4094-B3BD-1772F7459CBE}"
RUNTIME_PLATFORM="X86">

 <KSHIM NAME="usbshim" COMMAND_LINE="null" />

 </KDRIVER>

 </DRIVER>

*…+

<LIBRARY>

 <KSHIM NAME="autofail" ID="{407D63CE-419D-4550-B54A-4F1C1B5BDD9F}" ONDEMAND="YES"
FILE="autofail" />

*…+

 <KSHIM NAME="usbshim" ID="{FD8FD62E-4D94-4FC7-8A68-BFF7865A706B}" FILE="usbd" />

 </LIBRARY>

But parsers exist ffs!

19

But not that much for editing…

• Geoff Chappell’s article in PoC||GTFO 13:9

• Or… We can write our own!
– Kaitai struct to the rescue \o/

Need just a bit of work to have the builder

 20

Recipe
How to write a shim in few^W^W^W a lot of slides…

21

1- Create a provider

• Create a driver & implement the hook
functions

• Define the shim and hooks

– Register them in the KSE engine with:

-> exported by ntoskrnl.exe but not declared in any headers!

NTSTATUS KseRegisterShimEx(
 KSE_SHIM *pShim,
 PVOID ignored,
 ULONG flags,
 DRIVER_OBJECT *pDrv_Obj);

22

1- Create a provider

• Shim object

typedef struct _KSE_SHIM {
 In SIZE_T Size;
 In PGUID ShimGuid;
 In PWCHAR ShimName;
 Out PVOID KseCallbackRoutines;
 In PVOID ShimmedDriverTargetedNotification;
 In PVOID ShimmedDriverUntargetedNotification;
 In PVOID HookCollectionsArray; // array of _KSE_HOOK_COLLECTION
} KSE_SHIM, *PKSE_SHIM;

23

1- Create a provider

• Collection of similar hooks

typedef struct _KSE_HOOK_COLLECTION {
 ULONG64 Type; // 0: NT Export, 1: HAL Export, 2: Driver Export, 3: Callback, 4: Last
 PWCHAR ExportDriverName; // If Type == 2
 PVOID HookArray; // array of _KSE_HOOK
} KSE_HOOK_COLLECTION, *PKSE_HOOK_COLLECTION;

KSE_HOOK_COLLECTION pCollecArray[2];
pCollecArray[0].Type = 3; // Driver callback
pCollecArray[0].ExportDriverName = NULL;
pCollecArray[0].HookArray = pHookArray;

pCollecArray[1].Type = 4; // Last entry in array
pCollecArray[1].ExportDriverName = NULL;
pCollecArray[1].HookArray = NULL;

24

1- Create a provider

typedef struct _KSE_HOOK {
 In ULONG64 Type; // 0: Function, 1: IRP Callback, 2: Last
 union {
 In PCHAR FunctionName; // If Type == 0
 In ULONG64 CallbackId; // If Type == 1
 };
 In PVOID HookFunction;
 Out PVOID OriginalFunction;
} KSE_HOOK, *PKSE_HOOK;

KSE_HOOK pHookArray[2];
pHookArray[0].Type = 1; // IRP Callback
pHookArray[0].CallbackId = 115; // IRP_MJ_DEVICE_CONTROL
pHookArray[0].HookFunction = (PVOID)ShimCallbackAddr;
pHookArray[0].OriginalFunction = NULL;

pHookArray[0].Type = 2; // Last entry in array
pHookArray[0].FunctionName = NULL;
pHookArray[0].HookFunction = NULL;
pHookArray[0].OriginalFunction = NULL;

25

In the KSE engine in memory…

26

2- Associate the shim with a driver

• With the Registry
– Easy peasy…

• With the SDB
– C:\Windows\apppatch\drvmain.sdb

– A bit harder to modify…

 27

3- Associate the shim with the provider

• Hijack a shim already defined in the SDB

– Register the provider (step 1) with the same name
as in the SDB

• autofail.sys… ;))

• Add a new entry in the SDB

 28

Strnametag = BinaryTag()
Strnametag.tag = 0x8801
Strnametag.data = unicodeStr('ShimKeyLog')
Strnametag.buffer_size = len(strnametag.data)

offset = sdb_str_section.getsize()
sdb_str_section.append(strnametag)

Kshim_name = ParentBlock()
Kshim_name.tag = 0x6001
Kshim_name.reste = offset

*…+

Kshim_tag = ParentBlock()
Kshim_tag.tag = 0x7025
Kshim_tag.reste = ListTag()
Kshim_tag.reste.addList([Kshim_name, Kshim_guid, Kshim_flag, Kshim_module])

sdb_db_section.append(Kshim_tag)

3- Associate the shim with the provider

29

To sum up

1. Create a shim provider (driver)

– Define the hooks and the shims structure

– Register the shim provider in the KSE Engine

2. Define the modules that should use the shim

– Either in the registry or in the shim database

3. Add the correlation between shim and shim
provider in the sdb

– Or hijack one already defined

30

For fun!

Demo time \o/

Plz, demo god!

…

No actually I don’t trust you…

31

Not reaaally for profit

• Good points

– Hard to detect if you don’t know where to look

– Kind of legit actually

• Not that much ugly hooking required

• Bad points

– Need to sign the provider

• Expensive… >.>’

– Hard to load through a vulnerable driver

• at boot time or by reloading the shimmed driver

– Hard to use for really early started drivers

32

Question?

33

Just in case…

35

Keylogger

• Key pressed

• IRQ sent to CPU -> interrupt!

• Call the interrupt handler (ISR)

• Cannot do the job -> dispatch DPC
– To execute a routine later

• Call the Deferred Routine from the keyboard
driver

• Call a Class Service Callback routine

• --> retrieve the data from the hardware

36

MSDN with love

37

• Device Input and Output Control

– Control code used to communicate with the driver

– Callback #15 called on driver side

• IRP_MJ_DEVICE_CONTROL for the ones who wonder…

• Driver performs the job assigned to the IOCTL

