

How secure are your VoLTE and VoWiFi calls?

Priya Chalakkal

About me: Priya Chalakkal

- ERNW GmbH, Heidelberg
- Loves telco, pcaps, binaries, logs, protocols and all security stuff in general.
- Completed Masters in Security and Privacy from TU, Berlin and UNITN, Trento.
- o https://priyachalakkal.wordpress.com/
- o https://insinuator.net/

Agenda

- Introduction
- o Fundamentals
- PART1: Attacks on OpenIMS (without IPSec)
- PART2: Attacks on real telecom providers (with IPSec)
- o Demo
- Mitigation

Introduction - Telephony

Circuit Switched

- PSTN : Public Switched Telephone Networks
- Dedicated circuit "Channel"
- Roots tracked back to 1876
 - Graham Bell got the first patent

Packet Switched

- Data sent as Packets
- Protocol stack: TCP/IP
- Eq:- Internet
- For voice VoIP

Introduction - VoIP

Introduction – VoLTE/VoWiFi

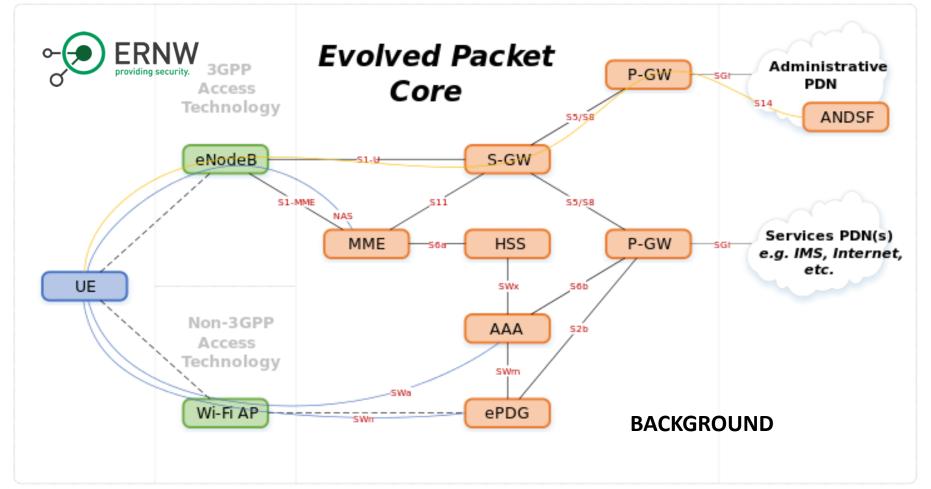
VoLTE

- SK Telecom and LG U+Objective South Korea 2012
- Vodafone Germany VoLTE March 2015

VoWiFi:

- Telekom Germany VoWiFi May 2016
- WiFi Calling

FUNDAMENTALS

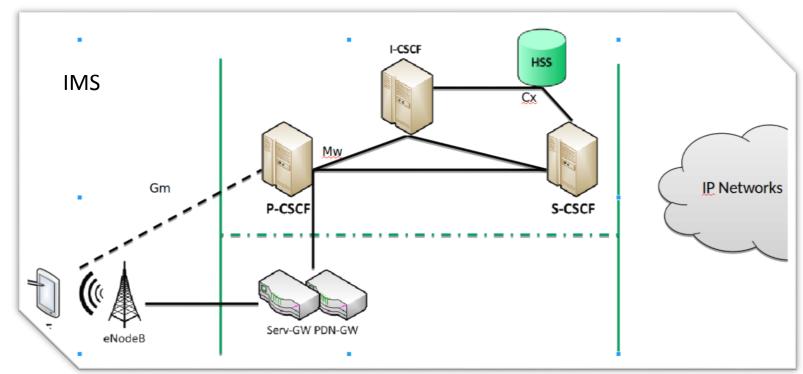

History of Mobile Communication

- o GSM (2G)
 - Relies on Circuit Switching
 - Supports only Voice and SMS
- o GPRS
 - Circuit voice and SMS
 - Packet Data
- o UMTS (3G)
 - Similar to GPRS
 - Other network elements evolved

Voice and 4G

- LTE (4G): Supports only packet switching
- Voice VoLTE
- Circuit Switched Fall Back (CSFB)
 - For voice, fall back to circuit switched networks.
- Other approaches
 - Simultaneous voice and LTE etc..

VoLTE Stack


VoIP TCP/UDP IP VoIP GTP TCP/UDP UDP VoIP UDP/TCP IP IP LTE ETH || || PHY PHY PHY UE eNodeB PDN-GW IMS

IMS – IP Multimedia Subsystem

- o Backend: IMS Core
 - o IP Multimedia Subsystem
 - Call session control functions (CSCF)
 - o P-CSCF
 - o S-CSCF
 - o I-CSCF

IMS Signaling

SIP - Session Initiation Protocol

- Similar to HTTP (text based)
- o TCP or UDP
- Contains SDP
 - Session Description Protocol
 - o Describing multimedia session
 - Eg:- audio/video type

SIP call session

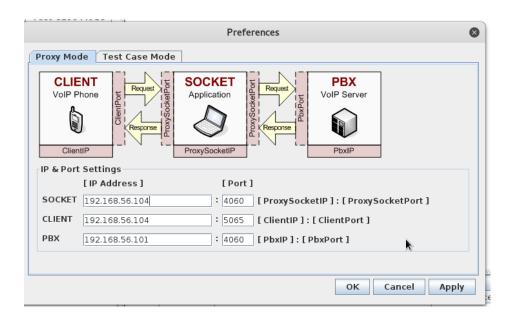
atlanta.com biloxi.com . proxy proxy .		
Alice'ssoftphone INVITE F1	100 Trying F5 < 180 Ringing F7 < 200 OK F10 <	INVITE F4
ACK F12		
Media Session		
<	BYE F13 	>

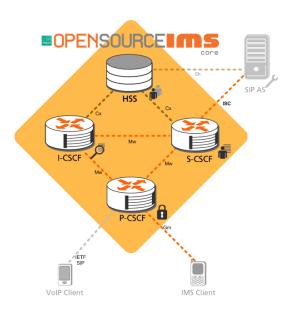

```
INVITE sip: jennifer@csp.com SIP/2.0
Via: SIP/2.0/UDP [5555::a:b:c:d]:1400; branch=abc123
Max-Forwards:70
Route: <sip: [5555::55:66:77:88]:7531;lr>, < sip:orig@scscfl.home.fi;lr>
P-Access-Network-Info:3GPP-E-UTRAN-TDD;utran-cell-id-3gpp=244005F3F5F7
P-Preferred-Service: urn:urn-7:3gpp-service.ims.icsi.mmtel
Privacy: none
From: <sip:kristiina@example.com>;tag=171828
To: <sip:jennifer@csp.com>
Call-ID: cb03a0s09a2sdfc1ki490333
Cseq: 127 INVITE
Require: sec-agree
Proxy-Require: sec-agree
Supported: precondition, 100rel, 199
Security-Verify: ipsec-3qpp; alg=hmac-sha-1-96; spi-c=98765432;
spi-s=87654321; port-c=8642; port-s=7531
Contact: <sip:[5555::a:b:c:d]:1400;+g.3gpp.icsi-ref="urn%3Aurn-7%"
3gpp-service.ims.icsi.mmtel*
Accept-Contact: *;+g.3gpp.icsi-ref="urn%3Aurn-7%"
3gpp-service.ims.icsi.mmtel*
Allow: INVITE, ACK, CANCEL, BYE, PRACK, UPDATE, REFER, MESSAGE, OPTIONS
Accept:application/sdp, application/3qpp-ims+xml
Content-Type: application/sdp
Content-Length: (...)
v=0
c=- 2890844526 2890842807 IN IP6 5555::a:b:c:d
c=IN IP6 5555::a:b:c:d
t=0 0
m=audio 49152 RTP/AVP 97 98
a=rtpmap:97 AMR/8000/1
a=fmtp:97 mode-change-capability=2; max-red=220
b=AS:30
b=RS:0
b=RR:0
a=rtpmap:98 telephone-event/8000/1
a=fmtp:98 0-15
a=ptime:20
a=maxptime:240
a=inactive
a=curr:gos local none
```

SIP

SDP

10 16


PART1: Attacking OpenIMS



Requirements

- OpenIMS
- SIP Proxy
- Viproy toolkit for Attack1
- IMS clients twinkle (in ubuntu), boghe (in windows)

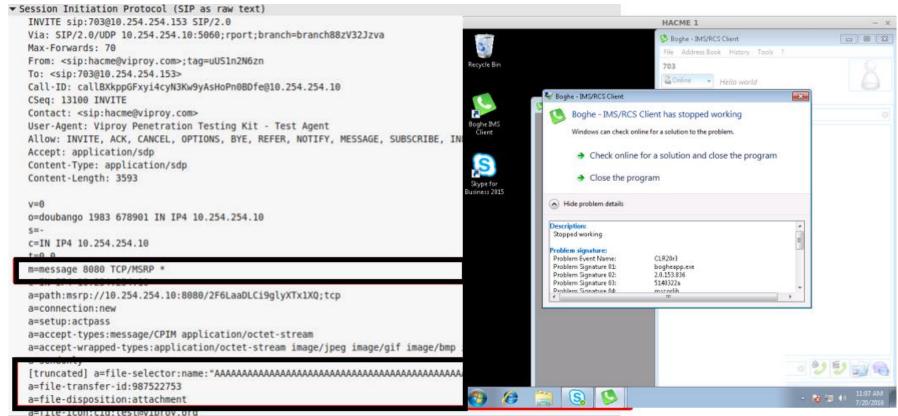
Attack modeling

- VoLTE and VoWiFi makes use of SIP
- This is experimental tests on OpenIMS with desktop clients
- Mainly SIP header injection
- Without IPSec in any communication
- o Both attacker and victim is a registered user.

Attack1: MSRP fuzzing

```
=[ metasploit v4.13.5-dev
+ -- --=[ 1607 exploits - 943 auxiliary - 276 post ]
+ -- --=[ 458 payloads - 39 encoders - 9 nops ]
+ -- --=[ Free Metasploit Pro trial: http://r-7.co/trymsp ]
msf auxiliary(viproy_msrp_header_fuzzer_with_invite) >
```

- MSRP protocol for transmission of series of related instant messages in context of communication session
- Evil sends fuzzed input in one of the MSRP header field to Alice
 - a=file-selector:name:"AAAAAAAAAAA..."
- This is an automated test vector in Viproy toolkit.


Result 1

- Crashes the IMS client of Receiver (Boghe IMS client is used in this case)
- Neither IMS nor client performed input validation.

Result1: MSRP fuzzing

Source: Fatih Ozvaci- Voip wars: The phreakers awaken

Attack2: Location manipulation

- P-Access-Network-Info defines the user location in the access network
- o Contains information such as:
 - Mobile Network Code (MNC)
 - Mobile Country Code (MCC)
 - Local Area Code (LAC)
 - Cell Identifier
- The attacker sends an INVITE request to Alice with a crafted location.

Result2

- Modified P-Access-Network-Info is accepted by IMS and sent to Alice
- No cross validation with HSS for user location.
- Can evade lawful interception techniques.
- NOT about privacy

Attack3: Roaming Information

- P-Visited-Network-ID header field that decides the access network that serves the user.
- Attacker sends a REGISTER request to IMS with an pre-added P-Visited-Network-ID header.

Result3

- P-CSCF just appends the network identity to the existing header field
- Attacker can use this to make his roaming calls as local calls

Output from S-CSCF packet dump:

P-Visited-Network-ID: open-ims_fake.test, open-ims.test

Attack4: Extra header field

- SIP protocol is an extensible protocol
 - Allows to add customized header fields
- Evil sends an INVITE request to Alice containing a custom header field X-Header

Result4

Via: SIP/2.0/UDP 0.0.0.0:4060; received=127.0.0.1; branch=z9hG4bK3fc4.d87f5ce1.0

Via: SIP/2.0/UDP 192.168.56.103:5060;rport=40303;branch=z9hG4bK79178419f7f6d3d08 Max-Forwards: 13

X-Header: "This is an extra header, I will send it to you for free"

Content-Type: application/sdp

More attack possibilities

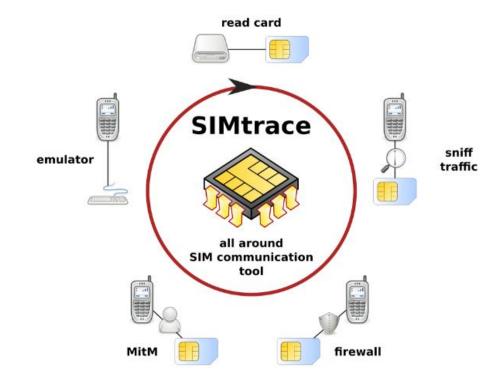
- Spoofing
- Injection XML, SQL,
- Denial of Service
- o Fuzzing
- O ...
- 0 ...

Attacking OpenIMS summary

- o 4 attacks on OpenIMS
 - MSRP fuzzing
 - User location manipulation
 - Roaming information manipulation
 - Extra header field injection
- These are Man in the End attacks
- Without IPSec

How to prevent tampering SIP Attacks?

- o Bring integrity protection?
- o Can IPSec solve this?
- Many real telecom provides actually have IPSec in place.
- Can we still mess with SIP headers in real providers?

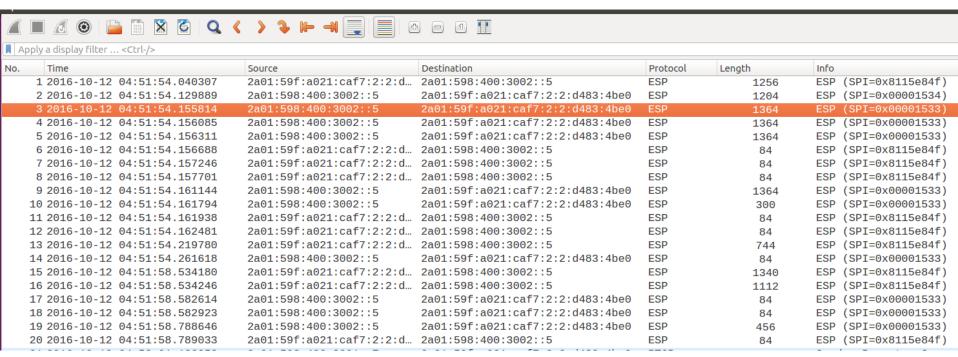


PART2: ATTACKING TELECOM PROVIDERS

Requirements

- VoLTE/VoWiFi enabled SIM cards
- SIMTrace hardware
- VoLTE/VoWiFi enabled phones
- Wireshark Gcrypt

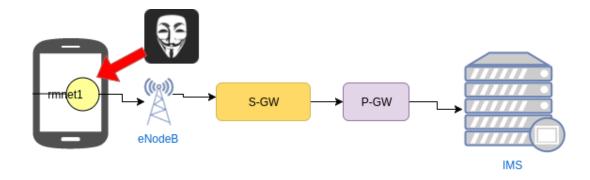
monitor, analyze and use the power of SIM



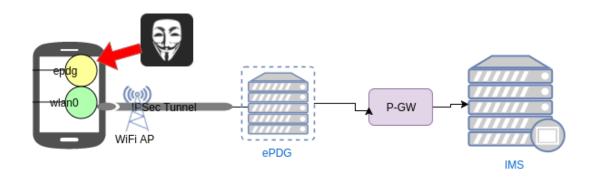
Attack modeling

- Sniffing VoLTE rmnet0, rmnet1
- Sniffing VoWiFi epdg1, wlan0
- Sniffing ISIM interface using SIMTrace
- o IPSec
 - ESP encapsulation for both VoLTE and VoWiFi
 - Integrity protection enabled for VoLTE/VoWiFi
 - Encryption for VoWiFi (only in wlan0)

ESP Packets


Test 1: Sniffing VoLTE/VoWiFi Interfaces

- VoLTE rmnet1/rmnet0
- VoWiFi -
 - Epdg1 hidden virtual interface with non-encrypted traffic
 - Wlan0 encrypted traffic


```
Sniffing VoLTE interface :
$ adb shell
$ tcpdump -i rmnet1 -n -s 0 -w - | nc -l 127.0.0.1 -p 11233
$ adb forward tcp:11233 tcp:11233 && nc 127.0.0.1 11233 | wireshark -k -S -i -
```


VoLTE sniffing

VoWiFi sniffing

Observations

- No encryption in VoLTE
 - Only integrity with ESP
- Encryption in VoWiFi
- Hidden interface with non-encrypted traffic detected in VoWiFi

Results1: Information disclosures

```
▼ Session Initiation Protocol (INVITE)
                                         @ims.telekom.de;user=phone SIP/2.0
 ▼ Request-Line: INVITE sip:+
     Method: INVITE
                                   @ims.telekom.de;user=phone
   ▶ Request-URI: sip:
     [Resent Packet: False]
 ▼ Message Header
     Content-Length: 828
   ▶ Route: <sip:[2a01:598:400:3002::5]:5063;lr>,<sip:[2A01:598:400:3002::5]:5063;transport=TCP;lr>
     Allow: INVITE, ACK, OPTIONS, CANCEL, BYE, UPDATE, INFO, REFER, NOTIFY, MESSAGE, PRACK
   ▶ Via: SIP/2.0/TCP [2a01:59f:a021:caf7:2:2:d483:4be0]:6000;branch=z9hG4bK1465682047smg;transport=TCP
     User-Agent: SM-G920F-XXU4DPGU Samsung IMS/5.0
     P-Access-Network-Info: IEEE-802.11;i-wlan-node-id=
     Supported: 100rel, timer, precondition, histinfo, sec-agree, gruu
   ▶ Security-Verify: ipsec-3gpp;q=0.5;alq=hmac-sha-1-96;prot=esp;mod=trans;ealq=null;spi-c=3132874533;
     Proxy-Require: sec-agree
     Require: sec-agree
   ▼ Contact: <sip:+
                               9@[2a01:59f:a021:caf7:2:2:d483:4be0]:6000>;+g.3qpp.icsi-ref="urn%3Aurn-
                                    @[2a01:59f:a021:caf7:2:2:d483:4be0]:6000
     ▶ Contact URI: sip:+4
      Contact parameter: +g.3gpp.icsi-ref="urn%3Aurn-7%3A3gpp-service.ims.icsi.mmtel"
      Contact parameter: +sip.instance="<urn:gsma:imei:3
     Max-Forwards: 70
   ▶ CSeq: 1 INVITE
     Call-ID: 3771911545@2a01:59f:a021:caf7:2:2:d483:4be0
   ▶ To: <sip:+
   ▶ From: <sip:+
     Content-Type: application/sdp
     Accept-Contact: *;+q.3qpp.icsi-ref="urn%3Aurn-7%3A3qpp-service.ims.icsi.mmtel"
     Accept: application/sdp,application/3qpp-ims+xml
     Session-Expires: 1800; refresher=uac
```


IMEI in SIP REGISTER (before authentication)

Contact:

```
<sip:262011202xxxxxx@[x.x.x.x]:6000>;q=0.50;+g.3gpp.icsi-ref=
"urn%3Aurn-7%3A3gpp-service.ims.xxx";
+g.3gpp.smsip;+sip.instance="<urn:gsma:imei:35490xxx-xxxxxxx-0>"
```


UTRAN Cell ID

 outgoing packets like SIP REGISTER, outgoing SIP INVITE, SIP SUBSCRIBE messages contains the location information

##FOR VOLTE

INVITE sip:alice@open-ims.test SIP/2.0

. . .

User-Agent: Samsung IMS/5

P-Access-Network-Info: 3GPP-UTRAN-TDD; utran-cell-id-3gpp=00000001

Content-Length: 117

##FOR VOWIFI

P-Access-Network-Info:IEEE-802.11;i-wlan-node-id=003a9axxxxxx

IMEI of caller

 SIP INVITE incoming request consists of a parameter that contains the IMEI number of the caller.

Accept-Contact:*;+sip.instance="<urn:gsma:imei:354xxxxx7-xxxxxx-0>";+g.3gpp.icsi-ref="urn%3Aurn-7%3A3gpp-service.ims.xxxx";explicit;require

IMSI of caller leaked

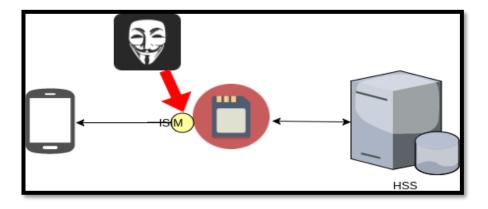
o In SIP INVITE incoming request

INVITE sip:262011202xxxx@[x.x.x.x]:6000 SIP/2.0

Private IP of IMS

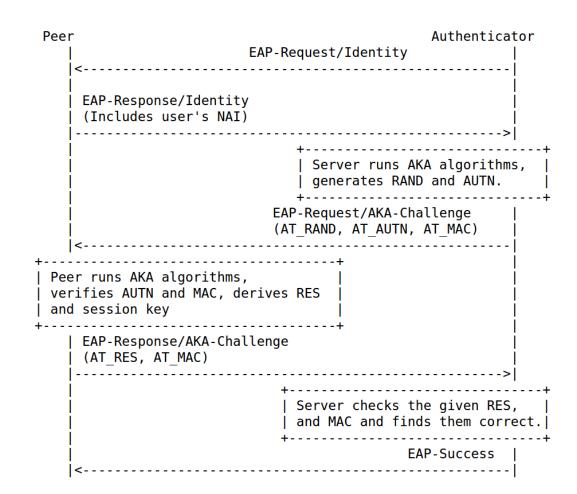
Found within SIP INVITE in incoming calls

```
To: <sip:+49151xxxxxxxxx062.xxx.xxx.xxx>
From: <sip:+49176xxxxxxxxx010.xxx.xxx.xxx>;
tag=h7g4Esbg_mavodi-a-10b-3c-2-ffffffff-
_000050ED9CA4-1224-xxxx-xxxx
```



Test 2: ISIM sniffing for extracting CK/IK

```
[~/thesis/simtrace/host]> sudo ./simtrace
imtrace - GSM SIM and smartcard tracing
(C) 2010 by Harald Welte <laforge@gnumonks.org>
Entering main loop
ATR APDU: 3b 9f 96 80 1f c6 80 31 e0 73 fe 21 1b 66 d0 02 06 e2 0f 18 01 f0
PPS(Fi=9/Di=6) APDU: 00 a4 00 04 02 3f 00 61 2e
VPDU: 00 c0 00 00 2e 62 2c 82 02 78 21 83 02 3f 00 a5 09 80 01 61 83 04 00 00 57 6a 8a 01 05 8b 03
PDU: 00 b0 00 00 0a 98 94 20 00 00 21 09 68 85 19 90 00
     00 a4 00 04 02 2f 05 61 1e
PDU: 00 c0 00 00 1e 62 1c 82 02 41 21 83 02 2f 05 a5 03 80 01 61 8a 01 05 8b 03 2f 04 04 02 00 08
PDU: 61 21 00 c0 00 00 21
PDU: c0 62 1f 82 05 42 21
PDU: a5 03 80 01 61 8a 01
     05 8b 03 2f 06 01 80
PDU: 02 01 c0 88 01 30 90
PDU: a0 18 a4 06 83 01 01
PDU: 95 01 08 a4 06 83 01
PDU: 01 0c 95 01 08 80 01
PDU: 01 90 00 84 01 d4 a4
.PDU: 06 83 01 0b 95 01 08
PDU: 90 00 00 a4 00 04 02
.PDU: a4 2f 05 61 1e 00 c0
PDU: 00 00 le c0 62 lc 82
APDU: 02 41 21 83 02 2f 05
PDU: a5 03 80 01 61 8a 01
PDU: 05 8b 03 2f 06 04 80
     9d 00 df ff 00 1f e2 00 00 00 c3 eb 00 00 00 01 48 00 50 00 00 00 00 08 00 00 60 91 0f 00 a4
03 80 01 61 8a 01 05 8b 03 2f 06 01 80 02 01 c0 88 01 30 91 0f 00 b2 07 04 38 b2 80 01 1a a4 06 83
```



ISIM sniffing with SIMTrace

Security protocol: EAP-AKA

GSM SIM traffic

Source	Destination	sport	dport	Protocol	Info
127.0.0.1	127.0.0.1	42129	4729	GSM SIM	ISO/IEC 7816-4 UPDATE BINARY Offset=35072
127.0.0.1	127.0.0.1	42129	4729	GSM SIM	ISO/IEC 7816-4 SELECT File DF.GSM-ACCESS
127.0.0.1	127.0.0.1	42129	4729	GSM SIM	ISO/IEC 7816-4 SELECT File 4f52
127.0.0.1	127.0.0.1	42129	4729	GSM SIM	ISO/IEC 7816-4 GET RESPONSE
127.0.0.1	127.0.0.1	42129	4729	GSM SIM	ISO/IEC 7816-4 UPDATE BINARY Offset=0
127.0.0.1	127.0.0.1	42129	4729	GSM SIM	ISO/IEC 7816-4 SELECT File ADF
127.0.0.1	127.0.0.1	42129	4729	GSM SIM	ISO/IEC 7816-4 SELECT File EF.PSLOCI
127.0.0.1	127.0.0.1	42129	4729	GSM SIM	ISO/IEC 7816-4 GET RESPONSE
127.0.0.1	127.0.0.1	42129	4729	GSM SIM	ISO/IEC 7816-4 UPDATE BINARY Offset=0
127.0.0.1	127.0.1.1	49482	53	DNS	Standard query 0x5e58 A prx1.ernw.net
127.0.1.1	127.0.0.1	53	49482	DNS	Standard query response 0x5e58 A prx1.ernw.net A 62.159.96.83
127.0.0.1	127.0.0.1	42129	4729	GSM SIM	ISO/IEC 7816-4 UPDATE BINARY Offset=36608
127.0.0.1	127.0.0.1	42129	4729	GSM SIM	ISO/IEC 7816-4 UPDATE BINARY Offset=36608
127.0.0.1	127.0.0.1	42129	4729	GSM_STM	TSO/TEC 7816-4 SELECT /ADE
127.0.0.1	127.0.0.1	42129	4729	GSM SIM	ISO/IEC 7816-4 RUN GSM ALGORITHM / AUTHENTICATE
127.0.0.1	127.0.0.1	42129	4729	GSM SIM	ISO/IEC 7816-4 GET RESPONSE
127.0.0.1	127.0.0.1	42129	4729	GSM SIM	ISO/IEC 7816-4 UPDATE BINARY Offset=40448
127.0.0.1	127.0.0.1	42129	4729	GSM SIM	ISO/IEC 7816-4 UPDATE BINARY Offset=35584
					FEAT NO 400 OCA OFICEIO

What can we find here?

- AKA parameters
 - RAND random challenge
 - AUTN server authentication
- o IPSec keys
 - IK integrity key
 - CK cyphering key

How to extract it?

Wireshark dissector

Byte(s)	Description	Length
1	'Successful 3G authentication' tag = 'DB'	1
2	Length of RES (L3)	1
3 to (L3+2)	RES	L3
(L3+3)	Length of CK (L4)	1
(L3+4) to	CK	L4
(L3+L4+3)		
(L3+L4+4)	Length of IK (L5)	1
(L3+L4+5) to	IK	L5
(L3+L4+L5+4)		

Table 4.4: Parsing the ISIM Authenticate response to get IK and CK

Result2: Extracting IK/CK

```
▶ User Datagram Protocol, Src Port: 52725 (52725), Dst Port: 4729 (4729)

▼ GSM SIM 11.11

    0000 .... = Class Coding: ISO/IEC 7816-4 (0x00)
    .... 00.. = Secure Messaging Indication: No SM used between terminal and card (0x00)
    .... .00 = Logical Channel number: 0
    Instruction: GET RESPONSE (0xc0)
    Length of Expected Response Data: 53
    RES Length: 08

RES Value: f74105e9ac41cc7a

CK Length: 10
    CK: 3ee2824f414d4be3ddea7807a68632fa
    IK Length: 10
    IK : 347c59d30bba9f1968285908f89f996c

Status word: 9000 Normal ending of the command

Output

Command

Comm
```


Are the keys used in ESP?

Failed authentication

```
▶ Frame 11: 120 bytes on wire (960 bits), 120 bytes captured (960 bits)

▶ Linux cooked capture

▶ Internet Protocol Version 6, Src: 2a01:59f:89a1:af67:2:3:f992:90bf, Dst: 2a01:598:401:3002::4

▼ Encapsulating Security Payload

    ESP SPI: 0xf5f9672e (4126762798)
    ESP Sequence: 1

▶ Data (44 bytes)

▼ Authentication Data
    [Good: False]
    [Bad: True]

[incorrect, should be 0x102DC16067AB36900D86827A]
```


Set up SA with obtained IK

Success: Key validation

```
Frame 12: 108 bytes on wire (864 bits), 108 bytes captured (864 bits)
Linux cooked capture
Internet Protocol Version 6, Src: 2a01:598:401:3002::4, Dst: 2a01:59f:89a1:af67:2:3:f992:90bf
▼ Encapsulating Security Payload
    ESP SPI: 0x00001c17 (7191)
    ESP Sequence: 1
    Data (32 bytes)
▼ Authentication Data [correct]
    [Good: True]
    [Bad: False]
```


Summary: Testing UE

- Test1: Sniffing VoLTE/VoWiFi interfaces
 - Use case identification
 - Results: Information disclosures like IMEI, IMSI, private IPs.
- Test2: ISIM sniffing with SIMTrace
 - Result: IK/CK
 - Wireshark dissector for extraction
 - Validation using Wireshark Gcrypt with authentication check in ESP

Simple demo of replay attack of SIP INVITE in a hidden non-IPSec channel

Final Summary

- Current implementations of VoLTE/VoWiFi make use of IPSec
- 4 experimental attacks on OpenIMS without ipsec
- Sniffing on VoLTE/VoWiFi interfaces with ipsec
 - Information disclosures identified
- ISIM Sniffing with SIMTrace
- Wireshark dissector
 - Extracted CK/IK
 - Verified obtained IK with wireshark Gcrypt

Mitigation

- Never rely on user end security
- Traffic monitoring
 - In PDN gateways that performs deep packet inspection
 - Whitelist rules in place that determines the expected value in each SIP header field.
- o Encryption
 - To protect against info disclosures

##IPTABLES ON ANDROID TO ROUTE TRAFFIC TO LAPTOP AND BACK

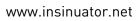
```
iptables -F
iptables -t nat -F
echo 1 > /proc/sys/net/ipv4/ip forward
RMNET=\`ip addr show dev rmnet1 \[ \]\grep -oE \[ \( \[ ([0-9]\{1,3}\\.)\{3\}[0-9]\{1,3\\\.)\]
WLAN=`ip addr show dev wlan0 | grep inet | grep -oE "([0-9]{1,3}\.){3}[0-9]{1,3}" | grep -v 255`
IMS="10.0.0.1"
MITM="192.168.0.2"
iptables -t nat -A OUTPUT -d $IMS -j DNAT --to-destination $MITM
iptables -t nat -A POSTROUTING -o wlan0 -d $MITM -j SNAT --to-source $WLAN
iptables -t nat -A POSTROUTING -o rmnet1 -s $MITM -d $IMS -j SNAT --to-source $RMNET
iptables -t nat -L -vn
```


Questions?

White paper:

https://www.ernw.de/download/newsletter/ERNW_Whitepaper_60_Practical_Attacks_On_VoLTE_And_VoWiFi_v1.0.pdf

Thanks to Hendrik, my mentor.



schalakkal@ernw.de

www.ernw.de

@priyachalakkal

Additional slides below

Related Work

o IMS-

- Fatih Ozvaci : VoIP wars, Viproy toolkit fake software updates, injected XSS, bogus content types, fuzzing and eavesdropping attacks
- Ahmad Abolhadid IMS testing spoofing, DoS and location manipulation

VolTE

 Li et al. free data service (ICMP packet encapsulation that gets forwarded from 4G gateway directly to the Internet), DoS through the signaling bearer.

Related work

o VoLTE

- Tu et al. DoS attack where attacker makes 50 consequent VoLTE calls and hangs up.
- Kim et al. Side channel attack to bypass IMS and about permission mismatch issue in android VoLTE telephony apps

o AKA

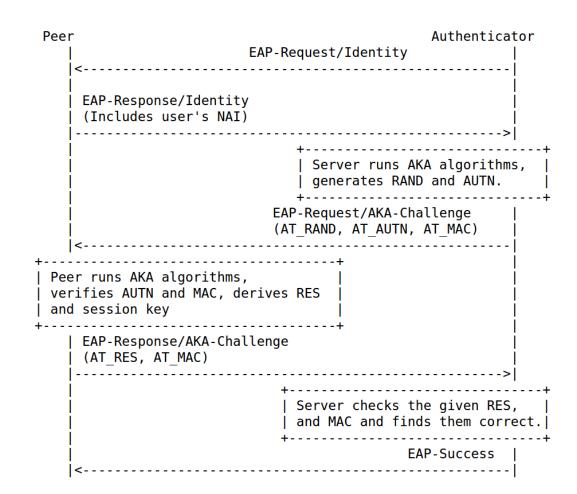
Ravi et al – WiFi based IMSI catcher

VolTE components

- Mobility Management Entity (MME)
 - a management entity that accounts for main control element for mobility in a LTE network
- Serving Gateway
 - o a user plane proxy for 3GPP mobility over 2G,3G and LTE accesses
- PDN Gateway
 - user plane anchor between 3GPP and non-3GPP accesses

VoWiFi components

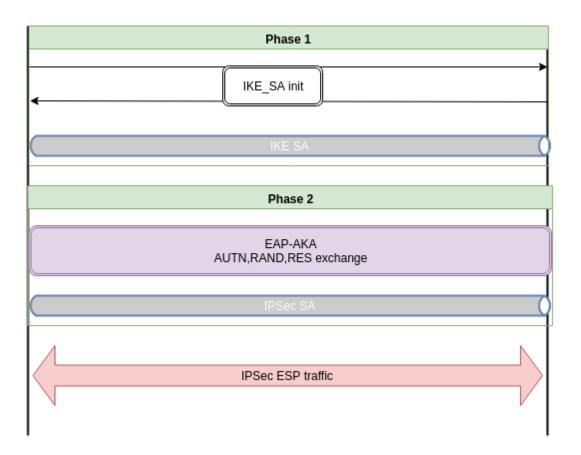
- o ePDG
 - a termination node of IPsec tunnels established with the UE
- PDN Gateway
 - user plane anchor between 3GPP and non-3GPP accesses


IP Multimedia Subsystem (IMS)

o CSCF

- Proxy call session control function
- Interrogating call session control function
- Serving call session control function
- Emergency call session control function

Security protocol: EAP-AKA



Security protocols: IKE and ESP

Protocol	Length	Info
ISAKMP	374	IKE_SA_INIT MID=00 Initiator Request
ISAKMP	94	IKE_SA_INIT MID=00 Responder Response
ISAKMP	398	IKE_SA_INIT MID=00 Initiator Request
ISAKMP	330	IKE_SA_INIT MID=00 Responder Response
ISAKMP	442	IKE_AUTH MID=01 Initiator Request
ISAKMP	186	IKE_AUTH MID=01 Responder Response
ISAKMP	186	IKE_AUTH MID=02 Initiator Request
ISAKMP	218	IKE_AUTH MID=02 Responder Response
ISAKMP	154	IKE_AUTH MID=03 Initiator Request
ISAKMP	122	IKE_AUTH MID=03 Responder Response
ISAKMP	138	IKE_AUTH MID=04 Initiator Request
ISAKMP	474	IKE_AUTH MID=04 Responder Response
ESP	174	ESP (SPI=0x1a28cded)
ESP	158	ESP (SPI=0x784dd6a2)
ESP	142	ESP (SPI=0x1a28cded)
ESP	1422	ESP (SPI=0x1a28cded)
ESP	494	ESP (SPI=0x1a28cded)
ESP	142	ESP (SPI=0x784dd6a2)
ESP	142	ESP (SPI=0x784dd6a2)
ESP	1006	ESP (SPI=0x784dd6a2)
ESP	142	ESP (SPI=0x1a28cded)
ESP	190	ESP (SPI=0x1a28cded)
ESP	174	ESP (SPI=0x784dd6a2)
		/

Security protocols: IKE and AKA

Other tests/Analysis

- Routing Technique for Mobile Clients
 - Use IPTABLES
 - Route the traffic from mobile to our desktop
 - Perform the injection using tools like Burp
 - Send the packet back to mobile client which then send the packet via LTE/WiFi to IMS

Service	Telekom S6	Telekom S7	O2 S6	O2 S7
VoWiFi	Yes	No	No	No
VoLTE	Yes	Yes	No	Yes

Table 4.1: VoLTE/VoWiFi feature support in Telekom and O2

Use Cases	Status
Volte to Volte	Call: X, Message: 🗸
VoLTE to VoWiFi	Call: ✓, Message: ✓
VoWiFi to VoLTE	Call: X, Message: 🗸
VolTE to PSTN	Call: \checkmark , Message: \checkmark
VoWiFi to PSTN	Call: 🗸, Message: 🗸
PSTN to VoWiFi	Call: ✓, Message: ✓
VoWiFi to VoWiFi	Call: ✓, Message: ✓

Table 4.2: VoLTE/VoWiFi usecase identification for Telekom.