Android_Emuroot:

Abusing Google Play emulator debugging to RE non-cooperative apps as root

Anais Gantet
Blackhoodie'18 - November 16, 2018

AIRBUS

Android_Emuroot QOutline

Introduction
Concepts
Practice

Conclusion

2/21

Introduction

Android world in a nutshell

Android security model around Android applications

= Linux DAC (Discretionary Access Control) for application sandboxing

= 1 Linux user for each application (app ID)
= 1 dedicated data directory for each application (RW reserved to the app ID)

= SELinux MAC (Mandatory Access Control)

= Access to objects (file, socket, etc.) conditioned by rules defined in sepolicy

3/21

Android world in a nutshell

Android security model around Android applications

= Linux DAC (Discretionary Access Control) for application sandboxing

= 1 Linux user for each application (app ID)
= 1 dedicated data directory for each application (RW reserved to the app ID)

= SELinux MAC (Mandatory Access Control)

= Access to objects (file, socket, etc.) conditioned by rules defined in sepolicy

Android applications

= File format: apk (Android PacKage) containing

= Dalvik code (.dex) resulting from Java code compilation
= Native code (.so libraries)
= Resources and certificates for code signing

= Need device configuration requirements (recent kernel version, Google Play Services, etc.)

= Can embed additional security measures like rooting detection mechanisms

3/21

Rooting detection mechanisms

Examples of common rooting checks in Android apps

1s -1 /system/app/Superuser.apk
Check unwanted applications pm list packages | grep eu.chainfire.supersu
pm list packages | grep magisk

1s -1 /system/bin/su /system/xbin/su
Check unwanted binaries 1s -1 system/su /system/bin/.ext/.su

1ls -1 /system/usr/we-need-root/su-backup

id t
Check shell permissions id | grep roo
ps lgrep adbd | grep root

. 1s -1R /system | grep -e :$ -e [r-][w-]x
Check file system changes (RW, etc.) ls -1aR /systen Iggrep (r-] [w-]s[-r' ']

getprop ro.secure

Check build tag, hardware/system properties | getprop | grep ro.product.model

getprop | grep ro.build.type

Some libraries /implementations

= rootbeer, RootTools, RootManager, etc. 4/21

Reverse engineering (RE) android applications - the common way

Why?
= Search app vulnerabilities

= Check potential privacy information leak

= etc.

How?

= Decompress the apk (apktool)

= Decompile Java code (JEB, procyon, dex2jar, etc.)
= Browse the app data (via ADB shell)

= Debug the app step by step (IDA debugger)

= Hook and trace functions (Frida for Android)

= frida-server must run on the device with root privileges

5/21

Reverse engineering (RE) android applications - the common way

Why?
= Search app vulnerabilities

= Check potential privacy information leak

= etc.

How?

= Decompress the apk (apktool)

= Decompile Java code (JEB, procyon, dex2jar, etc.)
= Browse the app data (via ADB shell)

= Debug the app step by step (IDA debugger)

= Hook and trace functions (Frida for Android)

= frida-server must run on the device with root privileges

Important: RE often requires ROOT access on the device ,
5/21

Existing devices and root access

Android devices

= Physical devices (user build)
= Emulated devices

= default (eng build)
= google-api (userdebug build)
= google-api-playstore (user build)

6/21

Existing devices and root access

Android devices

= Physical devices (user build)
= Emulated devices

= default (eng build)
= google-api (userdebug build)
= google-api-playstore (user build)

Root shell available?

= eng build: root shell by default Problem: easily detectable

. . . /system/xbin/su binary present
= userdebug build: root shell optional but possible (/sy yp)

6/21

Existing devices and root access

Android devices

= Physical devices (user build)
= Emulated devices
= default (eng build)
= google-api (userdebug build)
= google-api-playstore (user build)

Root shell available?

= eng build: root shell by default Problem: easily detectable

. . . /system/xbin/su binary present
= userdebug build: root shell optional but possible (/sy yp)
= user build: root access not allowed but possible by using
known rooting techniques Problem: methods already checked by

= Changing boot image or system image the rooting detection mechanisms

= Crafting custom ROM

= Rooting via Exploits, etc.
6/21

7/21

Our approach

The main idea
= Start from a clean Android system build
= Launch a non-root shell

= Understand how shell process information is stored by the
Linux kernel

= Patch the memory on the fly to change shell rights to root

8/21

Our approach

The main idea

= Start from a clean Android system build
= Launch a non-root shell

= Understand how shell process information is stored by the
Linux kernel

= Patch the memory on the fly to change shell rights to root

Chosen device: Google API Playstore emulator

= Because it is an emulated device
= Device memory easier to access
= GDB attachable to read/write the memory (-qemu -s)
= A lot of device versions testable

= Because it uses the user build variant

= Shell server (adbd) as root disabled
= Google Play Services installed

8/21

Concepts

Step 1: Understand the Android process metadata organization

task struct

= Process metadata stored in task_struct
= Interesting fields to identify the right task_struct PID
@parent
= Process PID
= Process name Crdeniiis
. . . Qcred
= Other interesting fields =0 1Ds
Qcreds
= Pointer to parent process process name —
= Pointers to credential structures 6
= Used by the kernel for permission checks

Emulator memory (4GB)

Kernel memory

https://android.googlesource.com /kernel /common /+ /android-3.10/include/linux/sched.h

9/21

Step 2: Understand cred structure content

Credentials
uid
gid

= Security context of a task defined in cred structure suid
= Interesting fields sgid
= Linux user identifier (UID) e“fd

= Linux effective user identifier (EUID) eg'.d

= Set of flags enabling or disabling Linux capabilities :5“{:

sgi

(CAP_CHOWN, CAP_DAC_OVERRIDE,
CAP_DAC_READ_SEARCH, etc.)
= security pointer with SELinux task information
= etc.

cap_inheritable

cap__permissive

cap__effective

cap_bset

https://android.googlesource.com /kernel /common/+ /android-3.10/include/linux/cred.h

10/21

Step 2: Understand cred structure content

Credentials sh init

uid 0x7d0 0x00
gid 0x7d0 0x00
= Security context of a task defined in cred structure suid 0x7d0 0x00
= Interesting fields sgid 0x7d0 0x00
= Linux user identifier (UID) euid 0x7do 0x00
= Linux effective user identifier (EUID) ceid 0x1d0 0x00
= Set of flags enabling or disabling Linux capabilities ‘sufd 0x7do 0x00
(CAP_CHOWN, CAP_DAC_OVERRIDE, feid 0740 00
CAP_DAC_READ_SEARCH, etc.) — L

= security pointer with SELinux task information cap_mhe"'taf)le 000000099 ORI

. etc. cap_permissive 0x00000000 OxfFFFFFF

cap_effective 0x000000c0 OxFFFFFFF

cap_bset Oxffffe0 0x00000000

https://android.googlesource.com /kernel /common/+ /android-3.10/include/linux/cred.h

10/21

Step 3: From non-rooted to rooted shell

In ADB shell

= Link /system/bin/sh to a file with magic name

= Launch the created file
With GDB debugger

= Search MAGICNAME task_struct in emulator
kernel memory
(find 0xc0000000,+0x40000000, "MAGICNAME")

= Step through parent task_struct until
finding init

= Get init cred structure pointer

= Overwrite MAGICNAME cred pointer by the
init one

= Set SELinux mode to permissive

Step 3: From non-rooted to rooted shell

In ADB shell

= Link /system/bin/sh to a file with magic name

= Launch the created file
With GDB debugger

= Search MAGICNAME task_struct in emulator
kernel memory
(find 0xc0000000,+0x40000000, "MAGICNAME")

= Step through parent task_struct until MAGICNAME

finding init PID

©parent

= Get init cred structure pointer

@creds

= Overwrite MAGICNAME cred pointer by the

init one MAGICNAME

@creds

= Set SELinux mode to permissive

Step 3: From non-rooted to rooted shell

In ADB shell

= Link /system/bin/sh to a file with magic name

= Launch the created file
With GDB debugger

= Search MAGICNAME task_struct in emulator
kernel memory

(find 0xc0000000,+0x40000000, "MAGICNAME") sh
= Step through parent task_struct until MAGICNAME PID
. . @parent
finding init PID .
@parent.
= Get init cred structure pointer izt
@creds
= Overwrite MAGICNAME cred pointer by the ::::: sh
init one MAGICNAME

= Set SELinux mode to permissive

Step 3: From non-rooted to rooted shell

In ADB shell

= Link /system/bin/sh to a file with magic name

= Launch the created file
With GDB debugger

= Search MAGICNAME task_struct in emulator

kernel memory adbd
(find 0xc0000000,+0x40000000, "MAGICNAME") sh PID
@parent.
= Step through parent task_struct until MAGICNAME PID
- . P @parent
finding init PID - Qcreds
@parent. @creds
= Get init cred structure pointer Surey adba
@creds
= Overwrite MAGICNAME cred pointer by the ::::: sh
init one MAGICNAME

= Set SELinux mode to permissive

Step 3: From non-rooted to rooted shell

In ADB shell

= Link /system/bin/sh to a file with magic name

= Launch the created file

With GDB debugger

= Search MAGICNAME task_struct in emulator init
kernel memory adbd PID
@parent
(find 0xc0000000,+0x40000000, "MAGICNAME") o PID =
@parent.
= Step through parent task_struct until MAGICNAME PID
- . P @parent
finding init PID . Gereds -
@parent Qcreds
= Get init cred structure pointer Surey adba
@creds
= Overwrite MAGICNAME cred pointer by the ::::: sh
init one MAGICNAME

= Set SELinux mode to permissive

Step 3: From non-rooted to rooted shell

In ADB shell

= Link /system/bin/sh to a file with magic name

= Launch the created file

With GDB debugger

= Search MAGICNAME task_struct in emulator init
kernel memory adbd PID
@parent
(£ind 0xc0000000,+0x40000000, "MAGICNAME") sh PID —
@parent
= Step through parent task_struct until MAGICNAME PID
. . @parent @cred
finding init PID - Qcreds -
@parent. Qcreds
= Get init cred structure pointer Surey adba
@creds
= Overwrite MAGICNAME cred pointer by the sh
init one MAGICNAME

= Set SELinux mode to permissive

Note: Technique similar to Token stealing on Windows 11/21

Practice

From GDB commands to a tool

What is Android_Emuroot?

= Tool as Python script based on open-source libraries
= pygdbmil for GDB commands
- pure—python—adb2 for ADB shell commands
= Features
= Automate the memory modification
= Give the possibility to spawn more than 1 rooted shell
= Support of multiple kernel versions

! https://pypi.org/project/pygdbmi
2https://pypi.org/project/pure—python—adb

12/21

Android_Emuroot usage

single --magic-name NAME
= Change the credentials of the shell given in parameter

= Note: the shell_name must run beforehand (process must exist)

adbd [--stealth]

= Modify the adb server credentials on the fly

= [--stealth] additional option: keep adbd EUID intact (for anti-detection reasons)

setuid --path NAME

= Install a sh binary with setuid root in NAME (default: /data/local/tmp/rootsh)

= Note: the setuid binary must be launched with -p option

13/21

Demo

Fichier Edition Affichage Rechercher Terminal Alde Fichier Edition Affichage Rechercher Terminal Aide

./adb shell

Fichier Edition Affichage Rechercher Terminal Aide

> more gemu-launch.sh
./qemu-system-1386 ose -avd emu
L /home/moody/And dk/enulator

Detected?

Root Checker

ROOT
CHECKER

SAFETY NET BUILD INFO

Root Status

Your Android SDK built
for x86 is

Not
Rooted

0S: Android 7.0 (SDK 24)

RootBeer Sample

Native Root Checker git

L
o
L
L
L
L
L

TEST KEYS

DEV KEYS

NON RELEASE KEYS
DANGEROUS PROPS

PERMISSIVE
SELINUX(EXPERIMENTAL)

SU EXISTS

SUPERUSER APK

NOT ROOTED @
b d

15/21

Android_Emuroot single --magic-name NAME

MAGICNAME
PID
@parent
creds
User contribution
Before rooting: Gereds 0x7d0
Qcreds 0x7d0
adb shell MAGICNAME D
$ In -s /system/bin/sh MAGICNAME D
$./MAGICNAME 0x7d0
0x7d0
Android_Emuroot contribution 0x7d0
0x7d0
= Specific shell credentials overwriting
(IDs+capabilities) 0x00000000
0x00000000
0x000000c0
Oxffffffe0

d_Emuroot sin --magic-name NAME

MAGICNAME
PID
@parent
User contribution
@cred
Before rooting: — 000
Q@creds 0x00
adb shell MAGICNAME ~on
$ In -s /system/bin/sh MAGICNAME T
$./MAGICNAME 0x00
0x00
Android_Emuroot contribution 0x00
. 0x00
= Specific shell credentials overwriting]
(IDs+capabilities) OxFFFFFFFF

OxfFFFFFFF
OxfFFFFFF
0x00000000

16/21

Android_Emuroot adbd stealthl]

adbd

Android_Emuroot contribution il
- STAGER PID
] PID ©parent. creds
= adbd credentials modification RID. Gparent
@parent creds 0x7d0
1D iliti et
(IDs+capabilities) __ — oot oo
:C"T GaD @creds 2dbd u:mo
T -
User contribution STAGER e 070
0x7d0 0x7d0
. 0x7d0
Before rooting: None P s
¥
After rooting: 0140
0<7d0 0x00000000
adb shell 0x00000000
echo "ok, I'm root now :)" oo e
k I 1 t) 0x000000c0
ok, m root now =

d_Emuroot adbd [--stealthl]

adbd

Android_Emuroot contribution *
- STAGER PID
PID @parent.
= adbd credentials modification n""’ Gparent
parent A creds
(IDs+capabilities) — ot —
0x00 creds
== 0x00 Gcreds adbd :’::
Qcreds E x
1 1 STAGER 00 a 0x7d0(e-1Ds)
User contribution 0 =
. 0x00
Before rooting: None — _
After rooting: G0
000 OxFFFFFFFF
adb shell | —
OxfFFFFFFF
echo "ok, I'm root now :)"] Jﬁx&
Ox
ok, I'm root now :) T L

0x00000000

17/21

Android_Emuroot setuid --path NAME

Android_Emuroot contribution

= A setuid binary on the file system
= /data remounted without nosuid

= adbd capabilities modification

User contribution

Before rooting: None

After rooting:

adb shell
$./data/local/tmp/rootsh -p
echo "ok, I'm root now :)"

ok, I'm root now :)

STAGER

PID

@parent.

creds

sh

adbd

PID

PID

@parent

@parent.

creds

@creds

0x7d0

@creds

@creds

0x7d0

@creds

0x7d0

Qcreds

@creds

0x7d0

STAGER

0x7d0

sh

adbd

0x7d0

0x7d0

0x7d0

0x7d0

0x7d0

0x7d0

0x7d0

0x00000000

0x00000000

0x000000c0

Oxffffffe0

0x7d0

0x7d0

0x7d0

0x7d0

0x00000000

0x00000000

0x000000c0

OxfFffffe0

Android_Emuroot setuid --path NAME

Android_Emuroot contribution

= A setuid binary on the file system
= /data remounted without nosuid

= adbd capabilities modification

User contribution

Before rooting: None

After rooting:

adb shell
$./data/local/tmp/rootsh -p
echo "ok, I'm root now :)"
ok, I'm root now :)

STAGER

PID

@parent.

@creds

@creds

STAGER

creds

0x00
0x00
0x00
0x00
0x00
0x00
0x00

0x00
OxFFFFFFF
OxfFFFFF
OxFFFFFFF
0x00000000

adbd

PID

PID

@parent

@parent.

creds

@creds

@creds

0x7d0

Qcreds

@creds

0x7d0

sh

adbd

0x7d0

0x7d0

0x7d0

0x7d0

0x7d0

0x7d0

OxfFFFFF
OxFFFFFFF

OxfFFFFFFF
0x00000000

18/21

Conclusion

Conclusion

Android_Emuroot today

= Give a rooted environment to help RE Android applications despite rooting-detection mechanisms

= Based on playing with GDB debugger attached to Android emulator memory

Currently supported kernel versions: google-api-playstore 24 to 27, x86

= Total time spent: about 35 person-days

Tool limitations

= Technique not persistent to device reboot
= Options giving multiple root shells can be detectable

= Technique not applicable if the applications refuse to run on emulators

19/21

Next steps?

= Still a work in progress
= Support more kernel architectures/versions?

= Extend the rooting technique to other emulated systems having GDB stub (e.g. VMWare)?

20/21

nks for your attention!

https://github.com/airbus-seclab/android_emuroot
mouad.abouhali@airbus.com, anais.gantet@airbus.com

https://airbus-seclab.github.io

21/21

	Introduction
	Concepts
	Practice
	Conclusion

