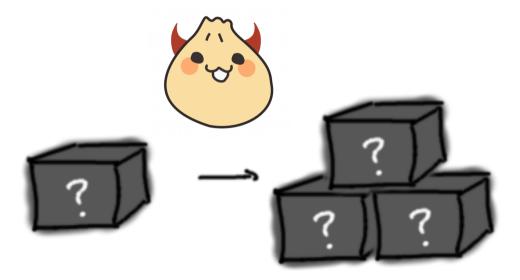


Flash dump(l)ing 101


(You can thank my boyfriend for this joke)

- Security researcher at QUarkslab (Paris)
- Love
 - (de)soldering stuff
 - hardware attacks
- R&D project with:
 - Philippe Teuwen (@doegox)
 - Guillaume Heilles (@PapaZours)

The magic box

- Box provides a service
- Users pay for that service
 - → What if the box can be duplicated ?

Opening up the black box

• The easy part

- No proprietary screws
- No fuse
- No sensor

- No picture of the black box or its PCB
- Here is a cute dumpling instead

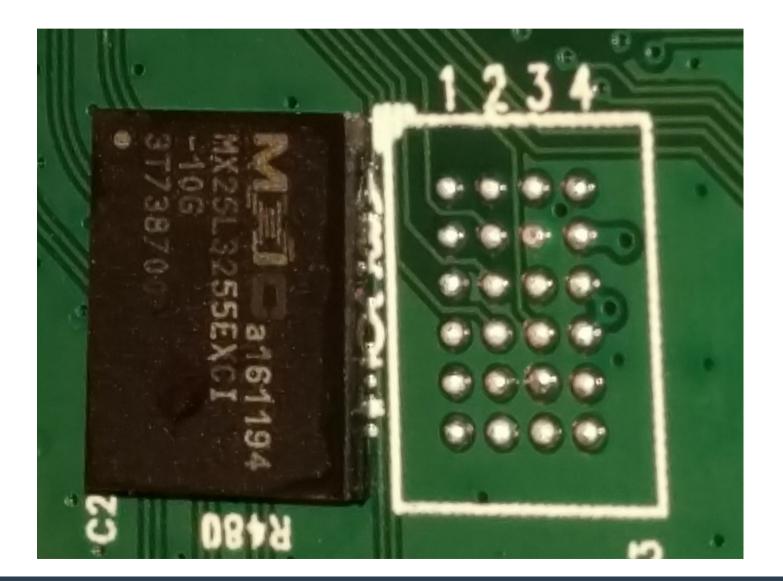
Inside the black box

Battleplan to attack the magic box

→ Target the flash chip which contains the firmware

1) Extract the flash chip from the board

- 2) Design a breakout PCB adapted to the chip
- 3) Craft the breakout PCB
- 4) Microsolder the chip to the breakout board
- 5) Make the chip talk! Dump it/reprogram it!

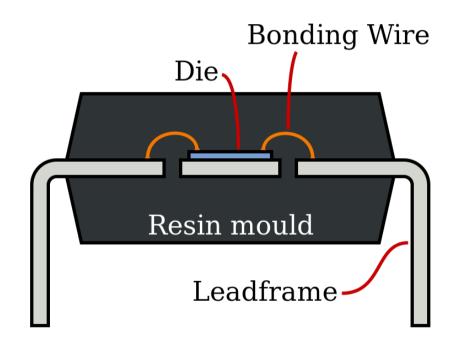

Step 1: Extracting the flash chip

Step 1: Extracting the flash chip

Desoldered Flash

Step 2: Design a breakout board

- Breakout board gives an easy access to each pin of the chip
- Translate one type of chip package to another
 - → Need more information on the chip
 - What is the source chip package?
 - What is the target chip package ?
 - What are the useful pins of the chip ?

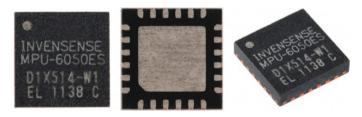

Chip packages?

Chip packages

https://en.wikipedia.org/wiki/File:DIP_Cross-section.svg

Chip packages

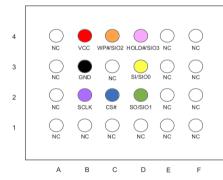
Dual In-Line Package (DIP)



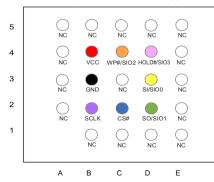
Small Outline Package (SOP)

Leadless Chip Carrier (LCC)

• Ball Grid Array (BGA)

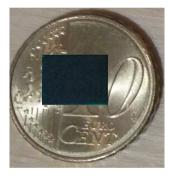

Pins of the breakout board

3. PIN CONFIGURATION


8-PIN SOP (200mil)

24-Ball TFBGA (6x8 mm, 4x6 Ball Array)

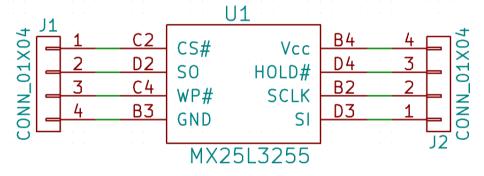
24-Ball TFBGA (6x8 mm, 5x5 Ball Array)


4. PIN DESCRIPTION

SYMBOL	DESCRIPTION										
CS#	Chip Select										
SI/SIO0	Serial Data Input (for 1xI/O)/ Serial Data Input & Output (for 2xI/O or 4xI/O mode)										
SO/SIO1	Serial Data Output (for 1xI/O)/Serial Data Input & Output (for 2xI/O or 4xI/O mode)										
SCLK	Clock Input										
WP#/SIO2	Write protection: connect to GND or Serial Data Input & Output (for 4xI/O mode)										
HOLD#/ SIO3	To pause the device without deselecting the device or Serial data Input/Output for 4 x I/O mode										
VCC	+ 3.0V Power Supply										
GND	Ground										
NC	No Connection										

Note:

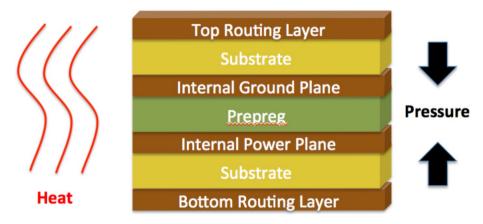
1. The HOLD# pin is internal pull high.

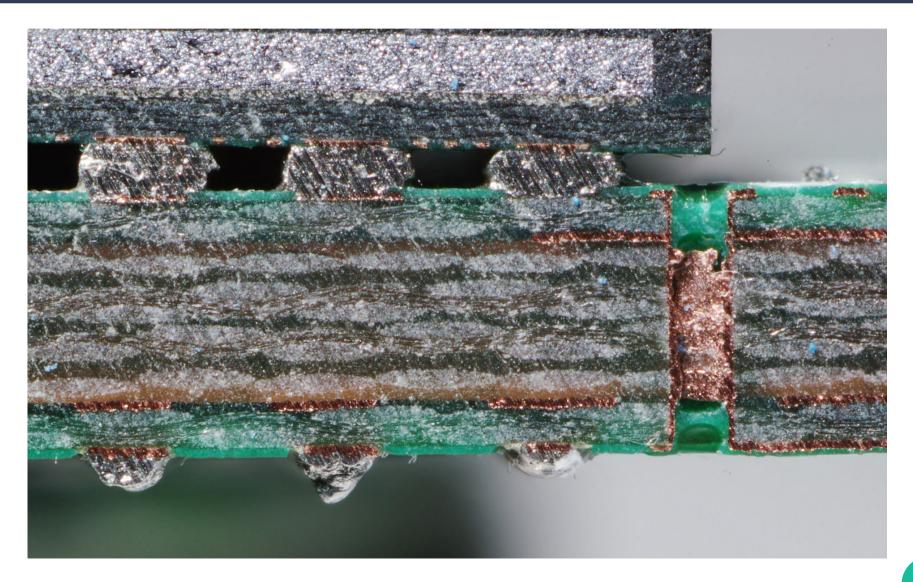

- Translate BGA to DIP8
- Expose only the 8 pins used

Actual PCB Design

PCB design with KiCad

1) create an electronic schematic

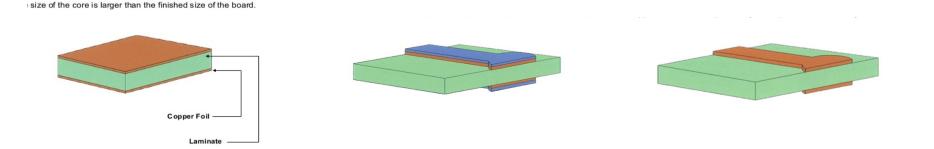

2) Create the footprint of the flash chip


Step 3 : Craft a breakout PCB

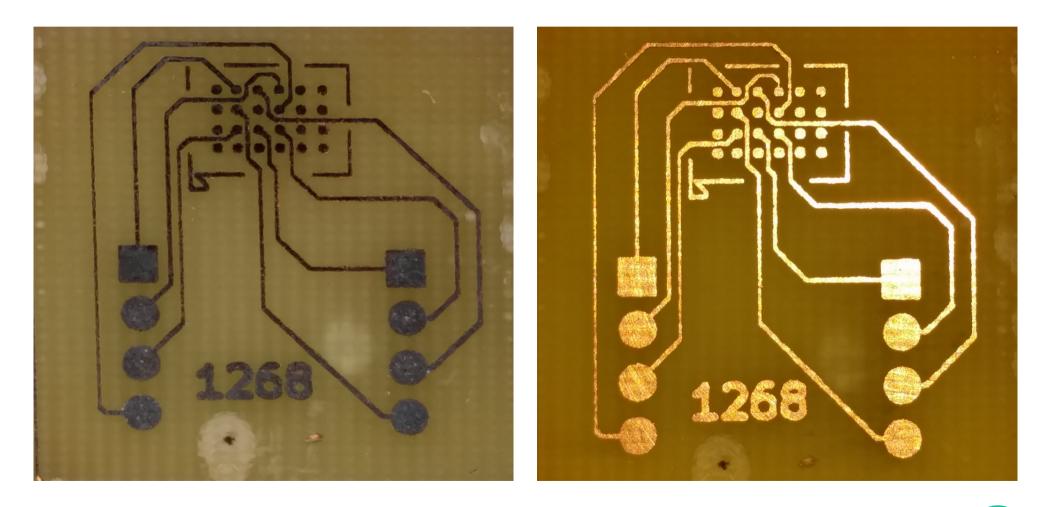
• PCB 101

- It's a sandwich
- Substrate, non-conductive layer, FR4 (epoxy + fiberglass)
- Conductive layer: copper
- Soldermask on top

PCB sandwich

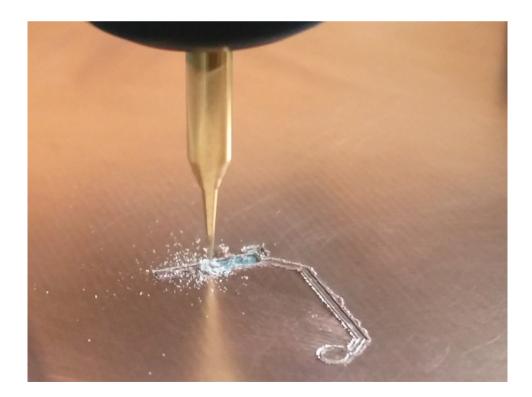

PCB fabrication

• We tried 2 different techniques:

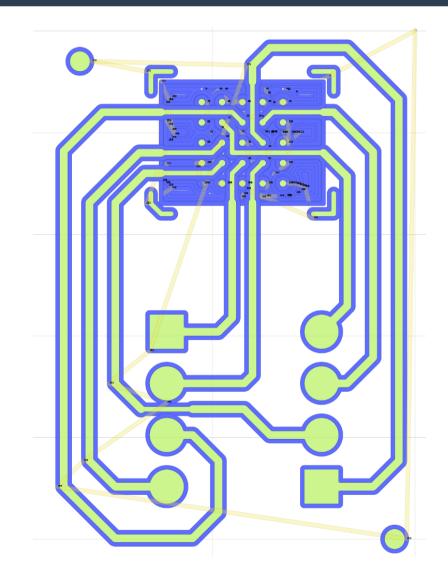

- Etching which uses chemical component
- Milling which uses mechanical drilling bit

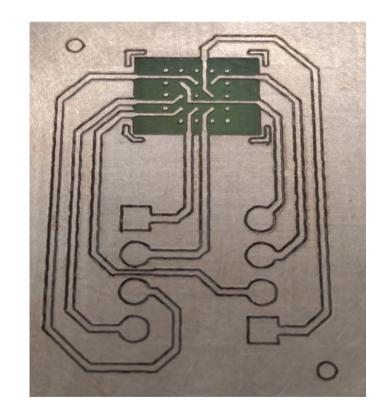
PCB fabrication by etching

- Transfer ink to the substrate
- Exposed copper is eaten away by chemicals
- Ink is removed



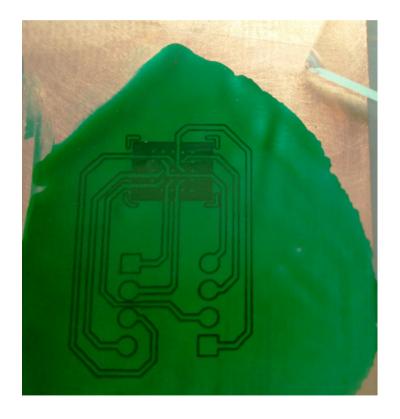
Pics of etching




PCB fabrication by milling

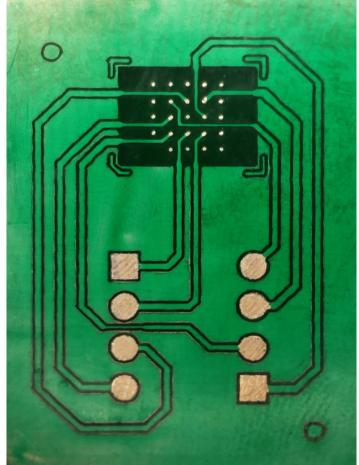
- CNC (Computer Numerical Control) milling machine
- Rotating cutter shaves chips of material

PCB fabrication by milling



Add the soldermask

Protect the copper from oxydation

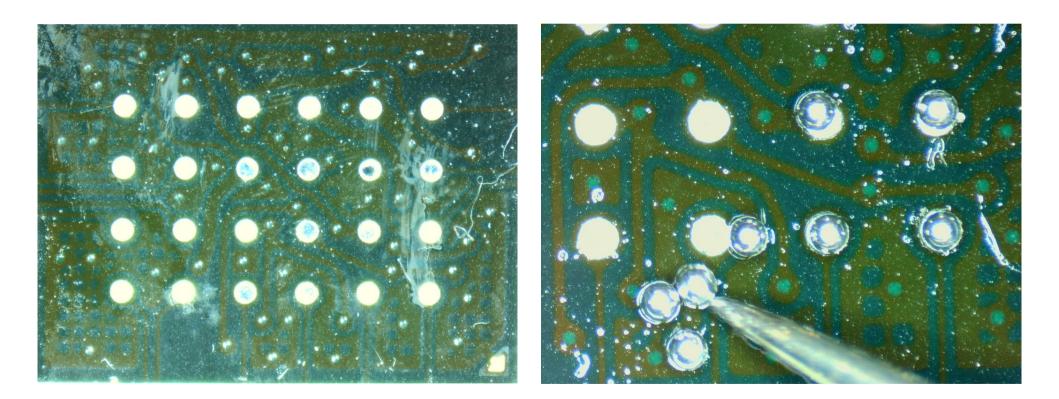


Lost access to copper pads :(

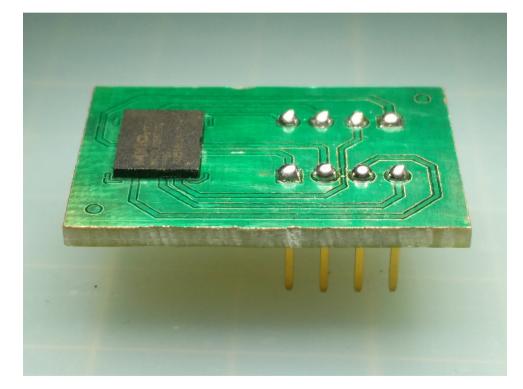
Fix the soldermask

Scratch the soldermask to (re)gain access to the pads

Step 4: Solder the chip to the breakout board

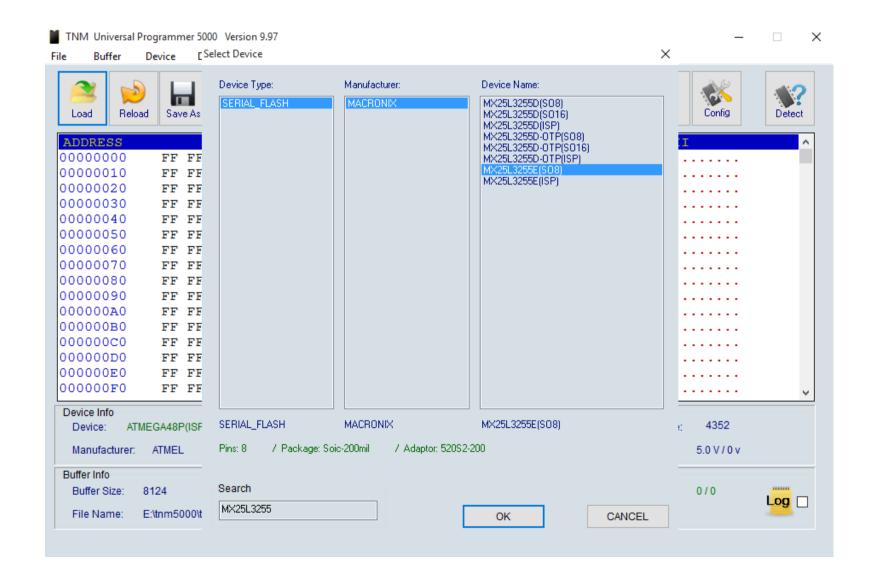

- BGA soldering
- Usage of microscope recommended
- Solder spool vs solder balls

- A solder ball must be placed in each slot of the BGA
- Requires lots of patience and steady hands :D


Pics of BGA reballing

Finished breakout board

Step 5: Dump the flash



Dump the flash

Buffer De	vice	Dig	gital T	Fester	Н	elp																	
Load Reload	L. Save	_			Select					Blank Program					rify	Nead	Eras	Erase Fuse			: Config)etect
DDRESS								H	EX										ASCI	II.			^
000000	FF	FF	FF	FF	\mathbf{FF}	FF	\mathbf{FF}	FF	FF	FF	FF	FF	\mathbf{FF}	\mathbf{FF}	\mathbf{FF}	FF							
0000010		FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF		• • •		• • •			
000020		FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF		FF		• • •		• • •			
000030		FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF		FF		• • •		• • •			
0000040	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF		• • •		• • •			
000050	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF		• • •		• • •			
000060		FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF		• • •		• • •			
000070		FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF		FF			• • •		• • •			
0800000		FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF		• • •		• • •			
0000090		FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF		• • •	• • • •	• • •			
0A0000	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF		• • •		• • •			
0000в0		FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF		FF		• • •		• • •			
0000c0		FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF		FF		• • •		• • •			
0000000	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF		FF		• • •	• • • •	• • •			
00000E0		FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF			• • • •	• • •			
0000F0	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF		• • •	• • • •	• • •			~
evice Info																							
Device: ATMEC	GA48P	(ISP)								Algo	rithm:	ATN	IEGA8	3515				C	nip Size	e:	4352		
Manufacturer: A	ATMEL									Pins	28							Vo	c/Vpp:	1	5.0 V / 0 v		
uffer Info																							
Buffer Size: 81	24									Cheo	ksum	n: 36	E0 (h	ex)				O	(/Fail:	(0/0		
File Name: E:\	tnm50																						g 🗌

Dump the flash

Conclusion: funky stats

• PCB by CNC milling:

- ~12 drilling bits died
- 4 PCBs made before calibration of the CNC was correct
- 2 PCBs to test the soldermask

• PCB by etching:

- 5 PCBs made before the ink transfer was correct
- 3 PCBS for etching (worked on the first try)

Conclusion: Bill of materials

• **Bootstrap:** ~1000€

- Hot air soldering station: ~100€
- Flash programmer (TNM5000): ~300€
- CNC machine: ~300€
- Microscope: ~500€

• Consumables: ~50€

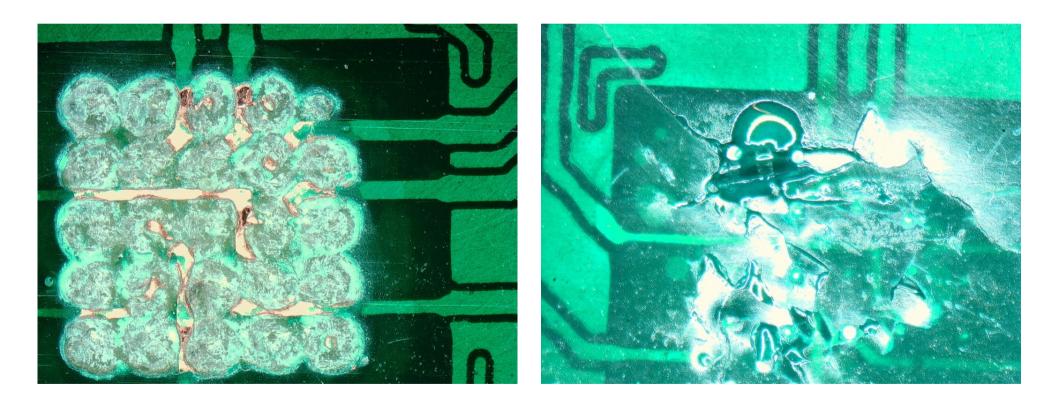
- Soldering balls, soldering flux, desoldering braid ~10€
- Chemicals (isopropanol, Ferric Chloride, ...) ~30€
- Epoxy Fiber FR4 Copper Clad Plate ~10€

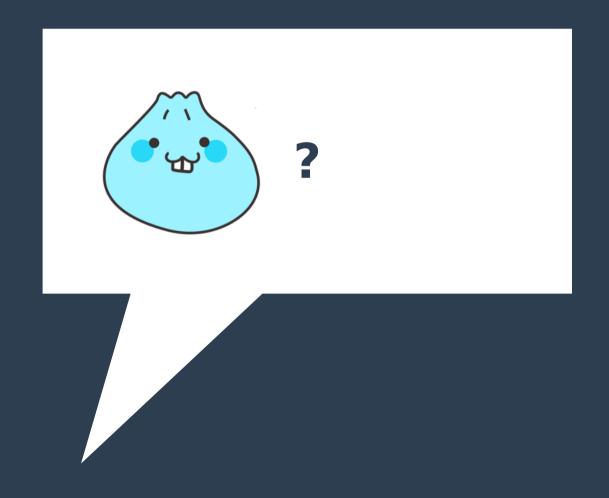
→ Crafting custom PCB is not that hard/expensive

Conclusion: and the magic box ?

Attacks tested:

- Transplantation: success
- Clone: success
- Impersonating a competitor's box: success


The magic box is still commercially available... :)


Bonus: the horror show

Bonus: the horror show (2)

